000 02385nam a2200217#a 4500
001 vtls000004035
008 230822s1987 xx 000 0 eng d
040 _aJPS
090 0 0 _aHYDR 627 HAR
100 _aHARDY, THOMAS A.
_eauthor
245 2 _aA NUMERICAL MODEL FOR SHOALING AND REFRACTION OF SECOND-ORDER CNOIDAL WAVES OVER AN IRREGULAR BOTT
260 _aWASHINGTON: DEPARTMENT OF THE ARMY,
_c1987
300 _aVARIOUS PAGIN
505 _aChapter 1. Introduction Chapter 2. Survey of water wave theory 2.1 The boundary value problem for water waves 2.2 Small-amplitude wave theory 2.3 Finite-amplitude wave theory 2.4 Stokes wave theory 2.5 Cnoidal wave theory 2.6 Solitary wave theory 2.7 Numerical wave theory 2.8 Brief outline of a derivation second-order cnoidal wave theory Chapter 3. Use of elliptic functions in Cnoidal wave theory 3.1 An illustration of the role cn function in Cnoidal wave theory 3.2 Efficient calculation of elliptic quantities Chapter 4. Shoaling and refraction over an irregular sea bottom 4.1 Wave refraction 4.2 Derivation of the wave angle equation 4.3 Wave shoaling 4.4 Derivation of the conservation of energy flux equation Chapter 5. Description of the numerical model 5.1 Overview of technique 5.2 Model output and input 5.3 Calculating wave height and wave angle 5.3.1 Subroutine ELLIP 5.3.2 Subroutine LENGTH 5.3.3 Subroutine ANGLE 5.3.4 Subroutine EFFLUX Chapter 6. Numerical model results 6.1 Shoaling over a plane bottom 6.1.1 Comparison of wave shoaling among small-amplitude, first-order Cnoidal and second-order Cnoidal waves 6.1.2 Comparison of theoretical and experimental shoaling rates 6.1.3 The shoaling of second-order Cnoidal wave over a plane bottom 6.2 Refraction over a plane bottom 6.2.1 Comparison of wave refraction among small-amplitude, first-order Cnoidal and second order Cnoidal waves 6.2.2 The refraction of second-order Cnoidal waves over a plane bottom 6.3 Shoaling and refraction over non-plane bathymetry 6.3.1 Shoaling and refraction over a spherical shoal 6.3.2 Shoaling and refraction over a trench 6.4 Comparison of computer time between small-amplitude and second-order simulations
546 _aENG
650 1 0 _aCOAST.
650 2 0 _aWAVES.
942 _cMONO
990 _a1987
999 _a06194
_a627 HAR
_aVIRTUAR0
_aVTLSSORT0080*0900*1000*2450*2600*3000*5050*5460*6500*6501*9040*9490*9900*9993
_c2762
_d2762
003 JPS